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Executive Summary 

When implementing (anisotropic) hyperelastic materials (or materials with strain 

measures alternative to the logarithmic strain) in a user subroutine, it may be 

necessary to use a different strain in the derivation. However, we must still provide 

Abaqus with the proper derivative it requires; specifically, the material Jacobian 

σ ε. In this document we show how such a derivative can be obtained.  

The intended audience for this document is primarily those users of 

Abaqus/Standard that develop UMAT subroutines; however, all users of Abaqus 

with an interest in advanced mechanics will benefit. 
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1. Introduction 
In Abaqus, user subroutine UMAT requires one to compute the derivative of the Cauchy 

stress 𝝈 with respect to the strain increment Δ𝜺. The strain increment in Abaqus is defined 

as the increment in the rate of deformation tensor, which will be denoted by Δ𝑫, which 

naturally leads, when integrated in non-shearing problems, to a logarithmic strain.  

If we want to use any other strain measure, or even use an arbitrary material model which 

depends solely on the deformation gradient, it would be helpful to have a generic way of 

finding the correct derivative of stress, even if we have defined the stress using another 

strain measure. Everything will then become a matter of using the chain rule in the correct 

way.  

In this paper we will present a methodology to use any strain measure, provided it is 

computed from the deformation gradient 𝑭. In Section 2 we will introduce the notation 

and in Section 3 we will  introduce additional notation for constructing fourth order 

tensors. This will help us in the subsequent derivation of derivatives of tensors. We then 

have a brief discussion about subspaces in Section 4. The derivative of the velocity 

gradient with respect to the deformation gradient is obtained in Section 5. This then 

finally culminates in being able to obtain the derivative of the deformation gradient with 

respect to the rate of deformation tensor in Section 6. And since any deformation measure 

used in an Abaqus user-defined material is implicitly derived from the deformation 

gradient, this will give us the possibility to use any arbitrary strain measure in a user 

material. 

The development of a UMAT user subroutine generally requires considerable expertise. 

The implementation of any realistic constitutive model requires extensive development 

and testing.  It is highly recommended that you familiarize yourself with the relevant 

portions of the Abaqus documentation before undertaking the development of a user 

material model. A list of references is supplied at the end of this document.  

2. Notation 
All tensors in this paper are defined with respect to a fixed orthonormal basis. This 

simplifies the discussion by eliminating the need to take derivatives of the basis vectors. 

The basis vectors are denoted by 𝒆𝑖 , where typically 𝑖 ∈ {1,2,3}. Tensors are denoted by 

order, where the order denotes the number of independent sets of basis vectors. Thus a 

vector, which is a first order tensor, has only a single independent set of basis vectors: 

𝒗 = ∑ 𝑣𝑖𝒆𝒊

3

𝑖=1

, 
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whereas a second order tensor has two sets: 

𝝈 = ∑ ∑ 𝜎𝑖𝑗𝒆𝑖𝒆𝑗

3

𝑗=1

3

𝑖=1

. 

Furthermore, we are going to use Einstein notation, which means we drop the summation 

symbols and it is assumed a summation occurs if we have a repeated index.  

𝝈 = 𝜎𝑖𝑗𝒆𝑖𝒆𝑗 

And we will drop the basis vectors, if the order of it is clear:  

𝝈 = 𝜎𝑖𝑗 

where we assume that the first index is associated with the first set of basis vectors and 

the second index is associated with the second set of basis vectors. The alphabetical order 

of the indices is not relevant; thus we may write   

𝝈𝑗𝑖 = 𝜎𝑗𝑖𝒆𝑗𝒆𝑖 

To write the transpose, we need to include the basis vectors  

𝜎𝑗𝑖𝒆𝑖𝒆𝑗, 

or introduce another tensor which represents the transpose: Define  

𝝈𝑇 = 𝜎𝑗𝑖𝒆𝑖𝒆𝑗. 

We will introduce notation that facilitates obtaining derivatives for second order tensors. 

In particular, we are going to address the derivatives that are required in most finite 

element solvers.  

In Sections 3 and 4, vectors will be written by bold lower case letters: for example 𝒗 and 

𝒘; second order tensors by bold upper case letters: for example 𝑨 and 𝑩; and fourth order 

tensors by bold calligraphic uppercase letters: for example 𝓘 and 𝓓.  

3. Fourth Order Tensor Constructors 
The dyadic product operator is a standard method for creating higher order tensors from 

lower order tensors.  

Definition 1. Let 𝒗 = 𝑣𝑖𝒆𝑖 and 𝒘 = 𝑤𝑖𝒆𝑖 be two first order tensors (vectors). Then their 

dyadic product 𝑨 = 𝒗 ⊗ 𝒘 is defined as:  

𝐴𝑖𝑗𝒆𝑖𝒆𝑗 = 𝑣𝑖𝑤𝑗𝒆𝑖𝒆𝑗 
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The dyadic product is often written without explicitly referring to the outer product 

operator ⊗ , thus 𝒗 ⊗ 𝒘 = 𝒗𝒘.  We can generalize this to higher dimensions. Note that 

the dyadic product does not change the order of the base vectors. Thus,  

𝑨 ⊗ 𝑩 = 𝐴𝑖𝑗𝐵𝑘𝑙𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 

We introduce two additional notations 𝑨 ↬ 𝑩 and ↷ 𝑩 . The reason the operators are 

chosen in this way is to show the way the higher order tensor is constructed from the 

lower order ones. 

Definition 2. (Weave Constructor) The weave constructor takes two second order 

tensors and constructs a fourth order tensor as:  

𝑨 ↬ 𝑩 = 𝐴𝑖𝑘𝐵𝑗𝑙𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 

Definition 3. (Clamp Constructor) The clamp constructor takes two second order tensors 

and constructs a fourth order tensor as: 

𝑨 ↷ 𝑩 = 𝐴𝑖𝑙𝐵𝑗𝑘𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 

These operations are essentially generalized dyadic products that work on second order 

tensors.  

Let us specifically take 𝑨 = 𝒂 ⊗ 𝒃 and 𝑩 = 𝒄 ⊗ 𝒅. These are second order tensors, 

constructed from the regular dyadic product with vectors 𝒂, 𝒃, 𝒄 and 𝒅. 

Then the weave operation is a generalized dyadic product that changes the order of the 

vectors in the dyad in the following way:  

(𝒂 ⊗ 𝒃) ↬ (𝒄 ⊗ 𝒅) = 𝒂 ⊗ 𝒄 ⊗ 𝒃 ⊗ 𝒅 

This also explains the name we choose for the operator, since it weaves the first second 

𝑨, ( vector 𝒃) 

inside the two legs of tensor 𝑩 (vectors 𝒄 and 𝒅). 

In a similar way we can look at the clamp operator, which operates on the same second 

order tensors in the following way: 

(𝒂 ⊗ 𝒃) ↷ (𝒄 ⊗ 𝒅) = 𝒂 ⊗ 𝒄 ⊗ 𝒅 ⊗ 𝒃 

𝑨, which is the (vector 𝒃) is moved completely 

over  tensor 𝑩, which is now sitting in the middle. Hence, 𝑩 is clamped by the vectors 𝒂 

and 𝒃.  

The above definitions generalize this operation for sums of dyads. 
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Proposition 1. Fourth order tensors constructed using the weave and clamp constructors 

have the following interactions with each other when we apply a double contraction between 

them:  

(𝑨 ↬ 𝑩): (𝑪 ↬ 𝑫) = (𝑨 ⋅ 𝑪) ↬ (𝑩 ⋅ 𝑫) 

(𝑨 ↬ 𝑩): (𝑪 ↷ 𝑫) = (𝑨 ⋅ 𝑪) ↷ (𝑩 ⋅ 𝑫) 

(𝑨 ↷ 𝑩): (𝑪 ↬ 𝑫) = (𝑨 ⋅ 𝑫) ↷ (𝑩 ⋅ 𝑪) 

(𝑨 ↷ 𝑩): (𝑪 ↷ 𝑫) = (𝑨 ⋅ 𝑫) ↬ (𝑩 ⋅ 𝑪) 

 

Proof: We start with  

(𝑨 ↬ 𝑩): (𝑪 ↬ 𝑫) = 𝐴𝑖𝑘𝐵𝑗𝑙𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙: 𝐶𝑝𝑟𝐷𝑞𝑠𝒆𝑝𝒆𝑞𝒆𝑟𝒆𝑠 

= 𝐴𝑖𝑘𝐵𝑗𝑙𝛿𝑘𝑝𝛿𝑙𝑞𝐶𝑝𝑟𝐷𝑞𝑠𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= 𝐴𝑖𝑝𝐵𝑗𝑞𝐶𝑝𝑟𝐷𝑞𝑠𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= (𝐴𝑖𝑝𝐶𝑝𝑟)(𝐵𝑗𝑞𝐷𝑞𝑠)𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= (𝑨 ⋅ 𝑪) ↬ (𝑩 ⋅ 𝑫) 

 

In the same way we can prove the second equation 

(𝑨 ↬ 𝑩): (𝑪 ↷ 𝑫) = 𝐴𝑖𝑘𝐵𝑗𝑙𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙: 𝐶𝑝𝑠𝐷𝑞𝑟𝒆𝑝𝒆𝑞𝒆𝑟𝒆𝑠 

= 𝐴𝑖𝑘𝐵𝑗𝑙𝛿𝑘𝑝𝛿𝑙𝑞𝐶𝑝𝑟𝐷𝑞𝑠𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= 𝐴𝑖𝑝𝐵𝑗𝑞𝐶𝑝𝑠𝐷𝑞𝑟𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= (𝐴𝑖𝑝𝐶𝑝𝑠)(𝐵𝑗𝑞𝐷𝑞𝑟)𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= (𝑨 ⋅ 𝑪) ↷ (𝑩 ⋅ 𝑫) 

 

And then the third equation 

(𝑨 ↷ 𝑩): (𝑪 ↬ 𝑫) = 𝐴𝑖𝑙𝐵𝑗𝑘𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙: 𝐶𝑝𝑟𝐷𝑞𝑠𝒆𝑝𝒆𝑞𝒆𝑟𝒆𝑠 

= 𝐴𝑖𝑙𝐵𝑗𝑘𝛿𝑘𝑝𝛿𝑙𝑞𝐶𝑝𝑟𝐷𝑞𝑠𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= 𝐴𝑖𝑞𝐵𝑗𝑝𝐶𝑝𝑟𝐷𝑞𝑠𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= (𝐴𝑖𝑝𝐷𝑞𝑠)(𝐵𝑗𝑝𝐶𝑝𝑟)𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= (𝑨 ⋅ 𝑫) ↷ (𝑩 ⋅ 𝑪) 

 

And finally the last equation 

(𝑨 ↷ 𝑩): (𝑪 ↷ 𝑫) = 𝐴𝑖𝑙𝐵𝑗𝑘𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙: 𝐶𝑝𝑠𝐷𝑞𝑟𝒆𝑝𝒆𝑞𝒆𝑟𝒆𝑠 

= 𝐴𝑖𝑙𝐵𝑗𝑘𝛿𝑘𝑝𝛿𝑙𝑞𝐶𝑝𝑠𝐷𝑞𝑟𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= 𝐴𝑖𝑞𝐵𝑗𝑝𝐶𝑝𝑠𝐷𝑞𝑟𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= (𝐴𝑖𝑞𝐷𝑞𝑟)(𝐵𝑗𝑝𝐶𝑝𝑠)𝒆𝑖𝒆𝑗𝒆𝑟𝒆𝑠 

= (𝑨 ⋅ 𝑫) ↬ (𝑩 ⋅ 𝑪) 

Which completes the proof. 
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From this we can see that the operators behave analogously to signed quantities: weave 

times weave is weave, clamp times clamp is weave, and mixed weave and clamp become 

clamp. These are useful to remember, since they make working with the operators quite 

convenient. 

The next Proposition deals with the newly introduced operators working with second 

order tensors. 

Proposition 2. Fourth order tensors constructed using the weave and clamp constructors 

have the following interactions when applying a double contraction with a second order 

tensor:  

(𝑨 ↬ 𝑩): 𝑪 = 𝑨 ⋅ 𝑪 ⋅ 𝑩𝑇 

(𝑨 ↷ 𝑩): 𝑪 = 𝑨 ⋅ 𝑪𝑇 ⋅ 𝑩𝑇 

𝑪: (𝑨 ↬ 𝑩) = 𝑨𝑇 ⋅ 𝑪 ⋅ 𝑩 

𝑪: (𝑨 ↷ 𝑩) = 𝑩𝑇 ⋅ 𝑪𝑇 ⋅ 𝑨 

Proof: Let us again start with the first equation, and write it out fully  

(𝑨 ↬ 𝑩): 𝑪 = 𝐴𝑖𝑘𝐵𝑗𝑙𝐶𝑘𝑙𝒆𝑖𝒆𝑗 

= 𝑨 ⋅ 𝑪 ⋅ 𝑩𝑇 

Onto the next, which follows a similar fashion  

(𝑨 ↷ 𝑩): 𝑪 = 𝐴𝑖𝑙𝐵𝑗𝑘𝐶𝑘𝑙𝒆𝑖𝒆𝑗 

= 𝑨 ⋅ 𝑪𝑇 ⋅ 𝑩𝑇 

Then number three 

𝑪: (𝑨 ↬ 𝑩) = 𝐶𝑖𝑗𝐴𝑖𝑘𝐵𝑗𝑙𝒆𝑘𝒆𝑙 

= 𝑨𝑇 ⋅ 𝑪 ⋅ 𝑩 

And finally the last one  

𝑪: (𝑨 ↷ 𝑩) = 𝐶𝑖𝑗𝐴𝑖𝑙𝐵𝑗𝑘𝒆𝑘𝒆𝑙 

= 𝑩𝑇 ⋅ 𝑪𝑇 ⋅ 𝑨 

Which concludes the proof. 

to the end. 

4. Subspaces of Second Order Tensors 
Tensors form a vector space, and as such are given with respect to a basis. The basis for 

symmetric tensors has six basis 'tensors', whereas the basis for general tensors has nine 

basis tensors. For now, we are not going to introduce any symmetry argument, but these 

are going to be of importance later if we need to invert the derivatives of some tensors. 
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Definition 4. 𝑰 is the second order unit tensor given by  

𝑰 = 𝛿𝑖𝑗𝒆𝑖𝒆𝑗 

In a similar way we define the fourth order unit tensor. 

Definition 5. 𝓘 is the fourth order unit tensor given by 

𝓘 = 𝛿𝑖𝑘𝛿𝑗𝑙𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 

= 𝑰 ↬ 𝑰 

Theorem 1. The derivative of a second order tensor with respect to itself is 𝑰 ↬ 𝑰.  

Proof: Let 𝑨 be an arbitrary second order tensor with nine independent components. Then  

𝜕𝑨

𝜕𝑨
=

𝜕𝐴𝑖𝑗

𝜕𝐴𝑘𝑙
𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 

Now since all the 𝐴𝑖𝑗 are independent components, this is only non-zero if 𝑖 = 𝑘 and 𝑗 = 𝑙, 

so  

𝜕𝐴𝑖𝑗

𝜕𝐴𝑘𝑙
= 𝛿𝑖𝑘𝛿𝑗𝑙𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 . 

Definition 6. Let 𝑨 be an arbitrary second order tensor. The symmetric part of 𝑨 is: 

sym(𝑨) =
1

2
(𝑨 + 𝑨𝑇). 

Proposition 3. Let 𝑨 be an arbitrary second order tensor. The symmetric part of 𝑨 can be 

determined by  

sym(𝑨) =
1

2
((𝑰 ↬ 𝑰) + (𝑰 ↷ 𝑰)): 𝑨 

Proof: We have  

sym(𝐀) =
1

2
(𝑨 + 𝑨𝑇) 

=
1

2
(𝑰 ⋅ 𝑨 ⋅ 𝑰 + 𝑰 ⋅ 𝑨𝑇 ⋅ 𝑰) 

=
1

2
((𝑰 ↬ 𝑰): 𝑨 + (𝑰 ↷ 𝑰): 𝑨) 

=
1

2
((𝑰 ↬ 𝑰) + (𝑰 ↷ 𝑰)): 𝑨 

Where we used parts 1 and 2 of Proposition 2. 
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Definition 7. Let 𝑨 be an arbitrary second order tensor. The asymmetric part of 𝑨 is:  

asym(𝑨) =
1

2
(𝑨 − 𝑨𝑇) 

Proposition 4. Let 𝑨 be an arbitrary second order tensor. The asymmetric part of 𝑨 can be 

determined by  

asym(𝑨) =
1

2
((𝑰 ↬ 𝑰) − (𝑰 ↷ 𝑰)): 𝑨 

Proof: We have 

asym(𝐀) =
1

2
(𝑨 − 𝑨𝑇) 

=
1

2
(𝑰 ⋅ 𝑨 ⋅ 𝑰 − 𝑰 ⋅ 𝑨𝑇 ⋅ 𝑰) 

=
1

2
((𝑰 ↬ 𝑰): 𝑨 − (𝑰 ↷ 𝑰): 𝑨) 

=
1

2
((𝑰 ↬ 𝑰) − (𝑰 ↷ 𝑰)): 𝑨 

Where we again used parts 1 and 2 of Proposition 2. 

We are going to assume operator precedence of the weave and clamp over addition and 

subtraction, so we can write the above results as  

sym(𝑨) =
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰): 𝑨 

asym(𝑨) =
1

2
(𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰): 𝑨  

It is clear that the symmetric part of a symmetric tensor is the tensor itself, thus if 𝑨 = 𝑨𝑇 

then sym(𝑨) = 𝑨 and asym(𝑨) = 𝟎.  

Corollary 1. The derivative of the symmetric operator is given by  

𝜕sym(𝑨)

𝜕𝑨
=

1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰) 

Proof: Let 𝑨 be any tensor. Then we have   

𝜕sym(𝑨)

𝜕𝑨
=

1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰):

𝜕𝑨

𝜕𝑨
 

=
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰): (𝑰 ↬ 𝑰) 

=
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰) 

Where we used parts 1 and 2 of Proposition 1. 
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Corollary 2. The derivative of the asymmetric operator is given by  

𝜕asym(𝑨)

𝜕𝑨
=

1

2
(𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰) 

Proof: Let 𝑨 be any tensor. Then we have   

𝜕asym(𝑨)

𝜕𝑨
=

1

2
(𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰):

𝜕𝑨

𝜕𝑨
 

=
1

2
(𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰): (𝑰 ↬ 𝑰) 

=
1

2
(𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰) 

Where we used parts 1 and 2 of Proposition 1. 

Proposition 5. Let A be an arbitrary second order tensor. Then sym(asym(𝑨)) =

asym(sym(A)) = 𝟎, where  𝟎 is the second order null tensor, thus all its components are zero. 

Proof: This follows straight from the definition of the operators and application of 

Proposition 1: 

sym(asym(𝑨)) =
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰):

1

2
(𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰): 𝑨 

=
1

4
((𝑰 ↬ 𝑰): (𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰) + (𝑰 ↷ 𝑰): (𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰)): 𝑨 

=
1

4
((𝑰 ↬ 𝑰 − 𝑰 ↷ 𝑰) + (𝑰 ↷ 𝑰 − 𝑰 ↬ 𝑰)): 𝑨 

=
1

4
𝓞: 𝑨 

= 𝟎 

The other proofs run in exactly the same vein, we copy the definitions, and then apply the 

rules of Proposition 1. 

 

Proposition 6. Let A be an arbitrary second order tensor. Then sym(sym(𝑨)) = sym(𝑨) 

Proof: This follows straight from the definition of the operators and application of the 

rules of Proposition 1.  

Proposition 7. Let A be an arbitrary second order tensor. Then asym(asym(𝑨)) = asym(𝑨) 

Proof: This follows straight from the definition of the operators and application of the 

rules of Proposition 1.  

Finally, it is often said that the derivative of a symmetric tensor is given by 
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰), but we wish to stress that this is technically incorrect. In fact, this is the 
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derivative of the symmetry function, as it operates between the full space of second order 

tensors and itself. If we consider symmetric tensors, then this is a proper subspace of the 

full space of second order tensors, and we should also look at the restriction of the 

derivative operator. However, we would need to change bases and our fourth order 

tensors lose their familiar form. Suffice it to say, that from the perspective of the full 

space 𝛼(𝑰 ↬ 𝑰) + (1 − 𝛼)(𝑰 ↷ 𝑰) are all proper derivatives of a symmetric tensor with 

respect to itself, and thus we lose unicity. From the viewpoint of the restricted symmetric 

space, all these operators are essentially the same: no matter what basis we choose for 

the symmetric subspace, the components will always be the same, regardless of the 

choice of 𝛼. 

5. The Derivative of ΔL 

Definition 8. Let �̇� =
𝝏𝑭

𝝏𝒕
. The velocity gradient is then given by  

𝑳 = �̇� ⋅ 𝑭−1. 

The velocity gradient will be used to define the rate of deformation tensor and the spin 

tensor. The integral of the rate of deformation tensor over a specific time increment is 

used by Abaqus as the strain increment. To be precise 

𝑫 = sym(𝑳)

𝑾 = asym(𝑳)
 

For ease of notation we now introduce the following time integrals, which are per 

increment, where 𝑡0 is the beginning of the increment and 𝑡1 is the end of the increment. 

Δ𝑳 = ∫ 𝑳𝑑𝑡
𝑡1

𝑡0

Δ𝑫 = ∫ 𝑫𝑑𝑡
𝑡1

𝑡0

= sym(Δ𝑳)

Δ𝑾 = ∫ 𝑾𝑑𝑡
𝑡1

𝑡0

= asym(Δ𝑳)

 

Abaqus uses Δ𝜺 = Δ𝑫 as the strain increment passed into UMAT. 

We thus need to specify the way in which the above time integral of 𝑳 is going to be 

computed. For this we need additional notation: the deformation gradient at the 

beginning of the increment is written as 𝑭0 and at the end of the increment as 𝑭.  

The increment in the velocity gradient in Abaqus is approximated by 

Δ𝑳 = Δ𝑭 ⋅  �̂�−1, 
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where �̂� is the average deformation gradient over the increment, and Δ𝑭 is the increment 

of the deformation gradient. Both are given in terms of the deformation gradient at the 

beginning and end of the increment as:  

�̂� =
1

2
(𝑭0 + 𝑭)

Δ𝑭 = 𝑭 − 𝑭0

 

Before we continue our discussion, we present a number of propositions on the derivative 

of tensors.  

Proposition 8. The derivative of a product of tensors 𝑨 and 𝑩 with respect to another tensor 

𝑿 is given by  

𝜕𝑨 ⋅ 𝑩

𝜕𝑿
= (𝑰 ↬ 𝑩𝑇):

𝜕𝑨

𝜕𝑿
+ (𝑨 ↬ 𝑰):

𝜕𝑩

𝜕𝑿
. 

Proof: We begin by using variations 

𝛿(𝑨 ⋅ 𝑩) = 𝛿𝑨 ⋅ 𝑩 + 𝑨 ⋅ 𝛿𝑩
= 𝑰 ⋅ 𝛿𝑨 ⋅ 𝑩 + 𝑨 ⋅ 𝛿𝑩
= (𝑰 ↬ 𝑩𝑇): 𝛿𝑨 + 𝑨 ⋅ (𝑰 ↬ 𝑰): 𝛿𝑩

= (𝑰 ↬ 𝑩𝑇): 𝛿𝑨 + (𝑨 ↬ 𝑰): 𝛿𝑩

 

From this we find  

𝜕𝑨 ⋅ 𝑩

𝜕𝑿
= (𝑰 ↬ 𝑩𝑇):

𝜕𝑨

𝜕𝑿
+ (𝑨 ↬ 𝑰):

𝜕𝑩

𝜕𝑿
 

which concludes the proof. 

Proposition 9. The derivative of the inverse of an invertible tensor A is given by  

𝜕𝑨−1

𝜕𝑿
= −(𝑨−1 ↬ 𝑨−𝑇):

𝜕𝑨

𝜕𝑿
. 

Proof: Start from the identity 𝑨−1 ⋅ 𝑨 = 𝑰 , and take a variation: 

𝛿(𝑨−1) ⋅ 𝑨 + 𝑨−1 ⋅ 𝛿𝑨 = 𝟎 ⟺

𝛿(𝑨−1) ⋅ 𝑨 = −𝑨−1 ⋅ 𝛿𝑨 ⟺

𝛿(𝑨−1) = −𝑨−1 ⋅ 𝛿𝑨 ⋅ 𝑨−1 ⟺

𝛿(𝑨−1) = −(𝑨−1 ↬ 𝑨−𝑇): 𝛿𝑨

 

Since the variations are arbitrary on the left and right we get the required result. 

Corollary 3. The derivatives of �̂� and 𝚫𝑭 with respect to 𝑭 are given by 
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𝜕�̂�

𝜕𝑭
=

1

2
𝑰 ↬ 𝐈

𝜕Δ𝑭

𝜕𝑭
= 𝑰 ↬ 𝑰

 

Corollary 4. The derivative of �̂�−1 with respect to 𝑭 is given as: 

𝜕�̂�−1

𝜕𝑭
= −

1

2
(�̂�−1 ↬ �̂�−𝑇). 

Proof: We can combine the previous results to get 

𝜕�̂�−1

𝜕𝑭
= −(�̂�−1 ↬ �̂�−𝑇):

𝜕�̂�

𝜕𝑭

= −(�̂�−1 ↬ �̂�−𝑇): (
1

2
𝑰 ↬ 𝐈)

= −
1

2
(�̂�−1 ↬ �̂�−𝑇).

 

Proposition 10. The derivative of the increment in the velocity gradient with respect to 𝑭 is 

given by  

𝜕Δ𝑳

𝜕𝑭
= 𝑭0 ⋅ �̂�−1 ↬ �̂�−𝑇 . 

Proof: We start with the definition of the incremental tensor, and then apply Proposition 

1. After this we start substituting all our results. The derivation will be lengthy, but 

mostly a sequence of persistence.  

𝜕Δ𝑳

𝜕𝑭
=

𝜕

𝜕𝑭
(Δ𝑭 ⋅ �̂�−1)

= (𝑰 ↬ (�̂�−1)
−𝑇

) :
𝜕Δ𝑭

𝜕𝑭
+ (Δ𝑭 ↬ 𝑰):

𝜕�̂�−1

𝜕𝑭

= (𝑰 ↬ �̂�−𝑇) −
1

2
(Δ𝑭 ↬ 𝑰): (�̂�−1 ↬ �̂�−𝑇)

= (𝑰 ↬ �̂�−𝑇) −
1

2
(Δ𝑭 ⋅ �̂�−1 ↬ �̂�−𝑇)

= (𝐈 −
1

2
Δ𝑭 ⋅ �̂�−1) ↬ �̂�−𝑇

= (�̂� ⋅ �̂�−1 −
1

2
Δ𝑭 ⋅ �̂�−1) ↬ �̂�−𝑇

= ((�̂� −
1

2
Δ𝑭) ⋅ �̂�−1) ↬ �̂�−𝑇

= (
1

2
𝑭0 +

1

2
𝑭 −

1

2
𝑭 +

1

2
𝑭0) ⋅ �̂�−1 ↬ �̂�−𝑇

= 𝑭0 ⋅ �̂�−1 ↬ �̂�−𝑇.

 

Proposition 11. The map 𝑓: 𝑉 → 𝑉, with given invertible tensors 𝑭, 𝑭0, 𝑭 + 𝑭𝟎 ∈ 𝑉 
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f(𝐅) = (𝐅 − 𝐅0) ⋅ (
1

2
(𝐅 + 𝐅0))

−1

 

Is invertible. 

Proof: It is clear that  

(
1

2
(𝐅 + 𝐅0))

−1

 

Is invertible, since its inverse is explicitly given by 
1

2
(𝑭 + 𝑭0). Now since 𝑓(𝑭) = Δ𝑳, we 

thus get  

Δ𝑳 = (𝑭 − 𝑭0) ⋅ (
1

2
(𝐅 + 𝐅0))

−1

⟺

1

2
Δ𝐋 ⋅ (𝐅 + 𝐅0) = 𝑭 − 𝑭0 ⟺

1

2
Δ𝑳 ⋅ 𝑭 +

1

2
Δ𝑳 ⋅ 𝑭0 + 𝑭0 = 𝑭 ⟺

1

2
Δ𝑳 ⋅ 𝑭0 + 𝑭0 = 𝑭 −

1

2
Δ𝑳 ⋅ 𝑭 ⟺

(
1

2
Δ𝑳 + 𝑰) ⋅ 𝑭0 = (𝑰 −

1

2
Δ𝑳) ⋅ 𝑭

 

Now when 𝑰 −
1

2
Δ𝑳  is invertible, then clearly we can have 𝑭 expressed as a function of Δ𝑳, 

and the constant tensor 𝑭0, since then we have  

𝑭 = (𝑰 −
1

2
Δ𝑳)

−1

⋅ (
1

2
Δ𝑳 + 𝑰) ⋅ 𝑭0. 

We still need to check whether it is invertible. Let us go back to the definition of Δ𝑳 to see 

that 

𝑰 −
1

2
Δ𝑳 = 𝑰 −

1

2
(𝑭 − 𝑭0) ⋅ (

1

2
(𝑭 + 𝑭0))

−1

= 𝑰 −
1

2
(𝑭 + 𝑭0 − 2𝑭0) ⋅ (

1

2
(𝑭 + 𝑭0))

−1

= 𝑰 − 𝑰 + 𝑭0 ⋅ (
1

2
(𝑭 + 𝑭0))

−1

= 𝑭0 ⋅ (
1

2
(𝑭 + 𝑭0))

−1

.

 

We see that indeed 𝑰 −
1

2
Δ𝑳 is invertible, since 𝑭0 must be invertible, and the other factor 

we already know to be invertible. Thus we have that the explicit inverse is given by  
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𝑓−1(Δ𝑳) = (𝑰 −
1

2
Δ𝑳)

−1

⋅ (
1

2
Δ𝑳 + 𝑰) ⋅ 𝑭0, 

which shows that f is an invertible function. 

Proposition 12. The derivative of 𝑭 with respect to Δ𝑳 is given by 

𝜕𝑭

𝜕Δ𝑳
= �̂� ⋅ 𝑭0

−1 ↬ �̂�𝑇 . 

Proof: This follows directly from all the results above. We start with Proposition 11, which 

shows us that the map 𝑓(𝑭) = Δ𝑳 is invertible, thus there exists a map 𝑓−1  such that 

𝑓−1(Δ𝑳) = 𝑭. Both 𝑭 and 𝚫𝑳 have nine independent components.  

We start by considering the composition of the two maps:  

𝑓−1(𝑓(𝑭)) = 𝑭, 

thus we can take derivatives left and right, and use the chain rule to find  

𝜕𝑓−1

𝜕Δ𝑳
:

𝜕𝑓

𝜕𝑭
= 𝑰 ↬ 𝑰. 

Now we already have  

𝜕𝑓

𝜕𝑭
= 𝑭0 ⋅ �̂�−1 ↬ �̂�−𝑇 . 

So we are looking for a fourth order tensor, that when twice contracted with it gives 𝑰 ↬ 𝑰.  

Choosing  

𝜕𝑓−1

𝜕Δ𝑳
= �̂� ⋅ 𝑭0

−1 ↬ �̂�𝑇 

does the trick. Which we can check: 

(�̂� ⋅ 𝑭0
−1 ↬ �̂�𝑇): (𝑭0 ⋅ �̂�−1 ↬ �̂�−𝑇) = �̂� ⋅ 𝑭0

−1 ⋅ 𝑭0 ⋅ �̂�−1 ↬ �̂�𝑇 ⋅ �̂�−𝑇

= 𝑰 ↬ 𝑰
 

6. The Derivative of F with Respect to ΔD 
This then brings us to the culmination of what we are trying to achieve, and that is to 

obtain the derivative of 𝑭 with respect to Δ𝑫. Since all continuum measures we are using 

are going to be functions of 𝑭, we can then use the chain rule to see their sensitivity with 

respect to Δ𝑫. The final piece of the puzzle looks rather baffling, but is in fact quite 

straightforward, if we consider it as a partial derivative of a full function.  
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To keep in line with what we discussed before, we are going to find the derivative with 

respect to a not necessarily symmetric tensor 𝑫. But by using the symmetrisation 

functions, this still will work. Once limited to the space of symmetric tensors, we see that 

the components will then become fixed. 

To finish, let Δ𝑫 be an arbitrary symmetric tensor, and let Δ𝑾 be an arbitrary asymmetric 

tensor, then Δ𝑳 = Δ𝑫 + Δ𝑾, which is a bijective map. However, taking derivatives of a 

letting  Δ𝑫 and Δ𝑾 be any tensors, but let Δ𝑳 depend only on the symmetric and 

asymmetric parts of Δ𝑫 and Δ𝑾, respectively. Once we take the actual symmetric part as 

the representative element of the class, and use it in that sense we get the desired 

derivative. Thus  

Δ𝑳 = sym(Δ𝑫) + asym(Δ𝑾). 

In general, since Δ𝑫 and Δ𝑾 are independent of one another, we have that 

𝜕asym(Δ𝑾)

𝜕Δ𝑫
= 𝟎 

And 

𝜕sym(Δ𝑫)

𝜕Δ𝑫
=

1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰). 

Then also we get 

𝜕Δ𝑳

𝜕Δ𝑫
=

1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰). 

Finally, the derivative of 𝑭 with respect to Δ𝑫 follows from the chain rule. Thus 

𝜕𝑭

𝜕Δ𝑫
=

𝜕𝑭

𝜕Δ𝑳
:

𝜕Δ𝑳

𝜕Δ𝑫

= (�̂� ⋅ 𝑭0
−1 ↬ �̂�𝑇):

1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰)

=
1

2
( �̂� ⋅ 𝑭0

−1 ↬ �̂�𝑇 + �̂� ⋅ 𝑭0
−1 ↷ �̂�𝑇)

 

From the above we can see that all that happened is that we symmetrized the derivative 

of 𝑭 with respect to Δ𝑳. It is this derivative that needs to be used in order to get the 

derivative of the deformation measure that you might use.  

We should note that this is not a perfect derivative for a material model that depends on 𝑭 

since we clearly cannot influence all the components in 𝑭 by the components in Δ𝑫. 
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Another way to see the same derivative appear is by noting that for any symmetric 

quantity 𝑨, which either fully depends on 𝑭 or on 𝑫 we must have 𝛿𝑨 =
𝜕𝑨

𝜕𝑭
: 𝛿𝑭 

𝛿𝑨 =
𝜕𝑨

𝜕𝑭
: 𝛿𝑭

=
𝜕𝑨

𝜕Δ𝑫
: 𝛿Δ𝑫

=  
𝜕𝑨

𝜕Δ𝑫
:
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰): 𝛿Δ𝑳

=  
𝜕𝑨

𝜕Δ𝑫
:
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰):

𝜕Δ𝑳

𝜕𝑭
: 𝛿𝑭

 

Now since 𝛿𝑭 is arbitrary this must mean that 

𝜕𝑨

𝜕𝑭
=  

𝜕𝑨

𝜕Δ𝑫
:
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰): (𝑭0 ⋅ �̂�−1 ↬ �̂�−𝑇)

=
𝜕𝑨

𝜕Δ𝑫
:
1

2
(𝑭0 ⋅ �̂�−1 ↬ �̂�−𝑇 + �̂�−𝑇 ↷ 𝑭0 ⋅ �̂�−1)

 

We can now multiply the left and right hand side by 

1

2
(�̂� ⋅ 𝑭0

−1 ↬ �̂�𝑇 + �̂� ⋅ 𝑭0
−1 ↷ �̂�𝑇) 

to find that (for fun, check it with the rules) 

𝜕𝑨

𝜕𝑭
:
1

2
(�̂� ⋅ 𝑭0

−1 ↬ �̂�𝑇 + �̂� ⋅ 𝑭0
−1 ↷ �̂�𝑇) =

𝜕𝑨

𝜕Δ𝑫
:
1

2
(𝑰 ↬ 𝑰 + 𝑰 ↷ 𝑰) 

Which is the same that we found before. This however depends crucially upon the fact 

that the variations are exactly the same, and this is not necessarily so, for example when 

the tensor 𝑨 has certain dependencies on the rotations described in 𝑭. This is however the 

best approximation of the derivative with respect to Δ𝑫, and thus also the best value you 

can get with Abaqus. 

7. Example for Neo-Hookean Material 
-

Hookean material. This is to show how you would go about your own derivations. We 

note that a total formulation is being used.  

7.1. Required Basic Derivatives 

The derivative of the trace of a tensor is quite simply the identity, since: 
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𝜕𝑨: 𝑰

𝜕𝑨
= 𝑨:

𝜕𝑰

𝜕𝑨
+ 𝑰:

𝜕𝑨

𝜕𝑨
=  𝑨: 𝟎 + 𝑰: (𝑰 ↬ 𝑰)
= 𝑰

 

The derivative of the determinant we will give without proof [1], since the proof is rather 

involved: 

𝜕 det 𝑨

𝜕𝑨
= (det 𝑨)𝑨−𝑇 . 

7.2. The Energy Density Function 

So let us now look at implementing a simple neo-Hookean user material. Here then let 𝑭 

be the deformation gradient, and 𝐽 = det 𝑭. The isochoric deformation gradient is given by 

�̅� = 𝐽−1/3𝑭. The isochoric right Cauchy Green stretch tensor is then given by �̅� = �̅� ̅𝑇 ⋅ �̅�. 

Finally 𝐼1̅ = �̅�: 𝑰. With these definitions in hand, an energy density function is defined, 

which for a neo-Hookean material takes the form: 

𝑈 = 𝐶10(𝐼1̅ − 3) + 𝐷1(𝐽 − 1)2. 

7.3. The Stress 

The stress is obtained by taking the appropriate derivative of the aforementioned energy 

density function. We need a derivative for 𝐽, but that is just the derivative of the 

determinant of 𝑭. We also need the derivative of 𝐼1̅; this is going to be  

𝜕𝐼1̅

𝜕𝑭
=

𝜕

𝜕𝑭
(𝐽−

2
3𝐼1)

= 𝐽−
2
3

𝜕𝐼1

𝜕𝑭
−

2

3
𝐽−

5
3𝐼1

𝜕𝐽

𝜕𝑭

= 𝐽−
2
3𝑰:

𝜕𝑪

𝜕𝑭
−

2

3
𝐽−

5
3𝐼1𝐽𝑭−𝑇

= 𝐽−
2
3𝑰: ((𝑰 ↬ 𝑭𝑇):

𝜕𝑭𝑇

𝜕𝑭
+ (𝑭𝑇 ↬ 𝑰):

𝜕𝑭

𝜕𝑭
) −

2

3
𝐼1̅𝑭−𝑇

= 𝐽−
2
3𝑰: ((𝑰 ↬ 𝑭𝑇): (𝑰 ↷ 𝑰) + (𝑭𝑇 ↬ 𝑰): (𝑰 ↬ 𝑰)) −

2

3
𝐼1̅𝑭−𝑇

= 𝐽−
2
3(𝑰: (𝑰 ↷ 𝑭𝑇) + 𝑰: (𝑭𝑇 ↬ 𝑰)) −

2

3
𝐼1̅𝑭−𝑇

= 2𝐽−
2
3𝑭 −

2

3
𝐼1̅𝑭−𝑇

 

From line 1 to line 2, we used the product rule, the definition of 𝐼1̅, and a subsequent 

application Proposition 8. We then used the derivatives of transpose and self, after which 

we need to apply the products using the rules set out in Proposition 1. Which leaves us with 

contractions of second order tensors and fourth order tensors, so we follow Proposition 2 
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which gives us the final result. Substituting all this in our derivative of the energy density 

function gives us: 

 

𝑷 =
𝜕𝑈

𝜕𝑭
= 2𝐶10 (𝐽−

2
3𝑭 −

1

3
𝐼1̅𝑭−𝑇) + 2𝐷1(𝐽 − 1)𝐽𝑭−𝑇 

 

This is the first Piola-Kirchhoff stress. The Cauchy stress, as requested by Abaqus, is 

obtained by applying the standard push-forward operation, and thus gives us: 

 

𝝈 =
1

𝐽
𝑭 ⋅ 𝑷𝑇

=
2𝐶10

𝐽
(𝐽−

2
3𝑭 ⋅ 𝑭𝑇 −

1

3
𝐼1̅𝑰) + 2𝐷1(𝐽 − 1)𝑰

=
2𝐶10

𝐽
(�̅� −

1

3
(�̅�: 𝑰)𝑰) + 2𝐷1(𝐽 − 1)𝑰

=
2𝐶10

𝐽
dev(�̅�) + 2𝐷1(𝐽 − 1)𝑰

 

7.4. The Consistent Tangent 

As stated in the Abaqus User Subroutines Guide, the following derivative must be defined 

in subroutine UMAT: 

 

𝓒 =
1

𝐽

𝜕Δ(𝐽𝝈)

𝜕Δ𝜺

=
1

𝐽

𝜕(𝐽0𝝈0 + Δ(𝐽𝝈))

𝜕Δ𝜺

=
1

𝐽

𝜕(𝐽𝝈)

𝜕𝑭

𝜕𝑭

𝜕Δ𝐃

 

 

Where we go from the first to the second line by observing that 𝝈0 and Δ𝝈 are in the same 

configuration, and the initial stress multiplied by the initial volume stretch is a constant 

within the increment; thus its derivative with respect to Δ𝜺 is equal to zero, so we are free 

to add it in the numerator. (We are free to add any constant). 

 

We now need the derivative in the middle of the last expression. This is written out fully as: 

 

𝜕(𝐽𝝈)

𝜕𝑭
=

𝜕

𝜕𝑭
(2𝐶10dev(�̅�) + 2𝐷1(𝐽2 − 𝐽)𝑰)

= 2𝐶10

𝜕dev(�̅�)

𝜕𝑭
+ 2𝐷1(2𝐽 − 1)𝑰 ⊗ 𝐽𝑭−𝑇

 

 

We are now left with computing 
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𝜕dev(�̅�)

𝜕𝑭
= (𝓘 −

1

3
𝑰 ⊗ 𝑰) :

𝜕�̅�

𝜕𝑭

= (𝓘 −
1

3
𝑰 ⊗ 𝑰) : (𝐽−

2
3

𝜕𝑭 ⋅ 𝑭𝑇

𝜕𝑭
−

2

3
𝐽−

5
3𝑩 ⊗ 𝐽𝑭−𝑇)

= (𝓘 −
1

3
𝑰 ⊗ 𝑰) : (𝐽−

2
3 ((𝑰 ↬ 𝑭):

𝜕𝑭

𝜕𝑭
+ (𝑭 ↬ 𝑰):

𝜕𝑭𝑇

𝜕𝑭
) −

2

3
�̅� ⊗ 𝑭−𝑇)

= (𝓘 −
1

3
𝑰 ⊗ 𝑰) : (𝐽−

2
3((𝑰 ↬ 𝑭) + (𝑭 ↷ 𝑰))) −

2

3
dev(�̅�) ⊗ 𝑭−𝑇 

= 𝐽−
1
3 (𝑰 ↬ �̅� + �̅� ↷ 𝑰 −

2

3
𝑰 ⊗ �̅�) −

2

3
dev(�̅�) ⊗ 𝑭−𝑇 

 

 

Now to multiply this by 
1

2
( �̂� ⋅ 𝑭0

−1 ↬ �̂�𝑇 + �̂� ⋅ 𝑭0
−1 ↷ �̂�𝑇) we get the derivative with respect 

to Δ𝜺. We will not further simplify this evaluation; we implement all directly in the example 

code.  

 

7.5. Result 

The example code is outlined below and included in the example files.  The tensor ordering 

for representing any tensor as a vector is given as 𝐹𝑥𝑥 , 𝐹𝑦𝑦, 𝐹𝑧𝑧, 𝐹𝑥𝑦, 𝐹𝑥𝑧, 𝐹𝑦𝑧, 𝐹𝑦𝑥 , 𝐹𝑧𝑥 , 𝐹𝑧𝑦. This is 

the reordering that is implicitly being performed in the weave, clamp and outer product 

routines. This allows us to do extraction of portions of the fourth order stiffness tensor, 

and also how we extract the vectorial stress from the matrix represented stress. 
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Figure 1. Neo Hookean code 
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8. Conclusion 
We have shown how to obtain the derivative when we wish to use an alternative strain 

measure than the one Abaqus is using. This is given by a transformation matrix as 

𝜕𝑭

𝜕Δ𝑫
=

1

2
( �̂� ⋅ 𝑭0

−1 ↬ �̂�𝑇 + �̂� ⋅ 𝑭0
−1 ↷ �̂�𝑇). 

In order to understand the above equation, we introduced some fourth order tensor 

construction operators, as well as the rules that facilitate their use. We hope that, even 

though this white paper is quite theoretical, this will allow the material programming 

enthusiast to derive the correct derivatives. 

example of a neo-Hookean material, including how the derivative of this material can be 

obtained using all the tools provided in the paper. 
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